

Name

ANSWERS

Class

MATHS TEACHER HUB

www.MathsTeacherHub.com

Inequalities

(9 – 1) Topic booklet

Higher

These questions have been collated from previous years GCSE Mathematics papers.

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

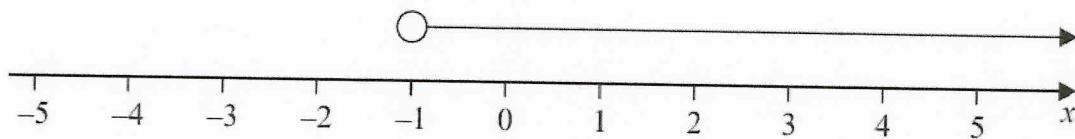
Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- If the question is a 1H question you are not allowed to use a calculator.
- If the question is a 2H or a 3H question, you may use a calculator to help you answer.

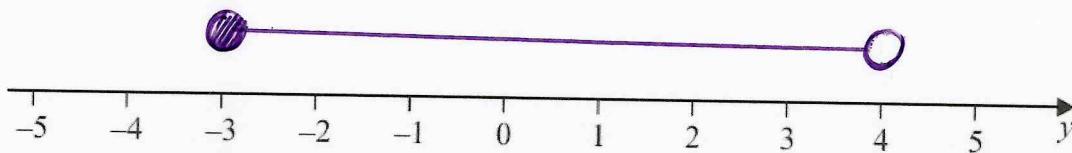
Information

- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.


Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions
Write your answers in the space provided.
You must write down all the stages in your working.


1 (a) Write down the inequality shown on this number line.

$$x > -1$$

(1)

(b) On the number line below, show the inequality $-3 \leq y < 4$

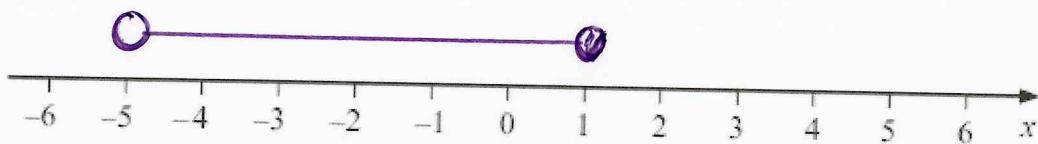
(2)

November 2021 – Paper 2H

(Total for Question 1 is 3 marks)

1 (a) Solve $14n > 11n + 6$

$$\begin{array}{c|c|c} & 14n > 11n + 6 & \\ -11n & & -11n \\ \hline & 3n > 6 & \\ \hline \frac{3}{\cancel{3}} & & \frac{1}{\cancel{3}} \\ & n > 2 & \end{array}$$



$$n > 2$$

(2)

(b) On the number line below, show the set of values of x for which $-2 < x + 3 \leq 4$

$$-3 \quad -3 \quad -3$$

(3)

June 2019 – Paper 2H

(Total for Question 1 is 5 marks)

1 Solve $\frac{5x}{2} > 7$

$$\begin{array}{c|c|c} & \frac{5x}{2} > 7 & \\ \times 2 & 5x > 14 & \times 2 \\ \div 5 & x > \frac{14}{5} & \div 5 \end{array}$$

$$x > 2.8$$

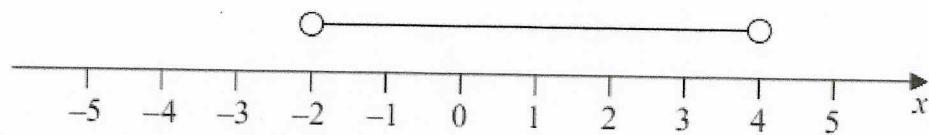
(2)

November 2020 – Paper 3H

(Total for Question 1 is 2 marks)

1 Solve $7x - 27 < 8$

$$\begin{array}{c|c|c} & 7x - 27 < 8 & \\ +27 & 7x < 35 & +27 \\ \div 7 & x < 5 & \div 7 \end{array}$$


$$x < 5$$

June 2022 – Paper 1H

(Total for Question 1 is 2 marks)

4 Jenna is asked to show the inequality $-3 < x \leq 4$ on a number line.

Here is her answer.

(a) Write down two mistakes Jenna has made.

1 Plotted -2 instead of -3

2 Circle at 4 should be coloured in.

(2)

(b) Work out the greatest integer that satisfies the inequality

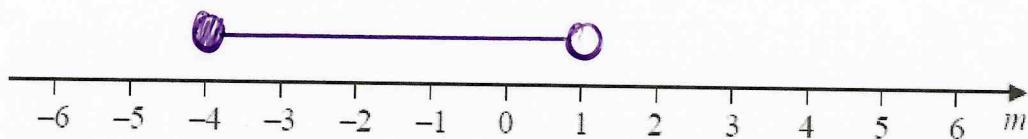
$$\begin{array}{l|l} 5y - 7 < 16 & \\ +7 & +7 \\ \hline 5y < 23 & \\ \div 5 & \div 5 \\ \hline y < \frac{23}{5} & \end{array}$$

$$y < 4.6$$

(2)

4 $-2 \leq n < 5$

n is an integer.



(a) Write down the greatest possible value of n .

4

(1)

(b) On the number line below, show the inequality $-4 \leq m < 1$

(2)

(c) Solve $\frac{2}{5}g - 4 < 6$

$$\begin{array}{c|c|c} & \frac{2}{5}g - 4 < 6 & \\ \begin{array}{l} +4 \\ \times 5 \\ \div 2 \end{array} & \begin{array}{l} \frac{2}{5}g < 10 \\ 2g < 50 \\ g < 25 \end{array} & \begin{array}{l} +4 \\ \times 5 \\ \div 2 \end{array} \\ & g < 25 & \end{array}$$

(3)

9 (a) Solve
$$\begin{array}{|l|l|l|} \hline 6x + 4 & > x + 17 & \\ \hline -x & 5x + 4 & > +17 \\ -4 & 5x & > 13 \\ \hline \div 5 & x & > \frac{13}{5} \\ \hline \end{array}$$

$$x > 2.6$$

(2)

(b) n is an integer with $-5 < 2n \leq 6$
 $\frac{-5}{2} < \frac{2n}{2} \leq \frac{6}{2}$
 Write down all the values of n

$$-2.5 < n \leq 3$$

$$-2, -1, 0, 1, 2, 3$$

(2)

Sample 1 – Paper 3H

(Total for Question 9 is 4 marks)

11 x and y are integers such that

$$\begin{array}{l} 3 < x < 8 \\ 4 < y < 10 \\ \text{and } x + y = 14 \end{array}$$

$$\begin{array}{l} x = 4, 5, 6, 7 \\ y = 5, 6, 7, 8, 9, \end{array}$$

Find all the possible values of x .

$$x + y = 14$$

$$5 + 9 = 14$$

$$6 + 8 = 14$$

$$7 + 7 = 14$$

$$x = 5, 6, 7,$$

November 2022 – Paper 3H

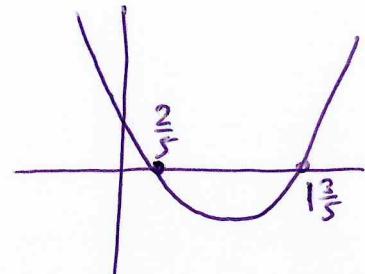
(Total for Question 11 is 2 marks)

18 Solve $(1-x)^2 < \frac{9}{25}$

$$(1-x) < \sqrt{\frac{9}{25}}$$

$$1-x < \pm \frac{3}{5}$$

$$1-x < \frac{3}{5}$$


$$1 - \frac{3}{5} < x$$

$$\boxed{\frac{2}{5} < x}$$

$$1-x < -\frac{3}{5}$$

$$1 + \frac{3}{5} < x$$

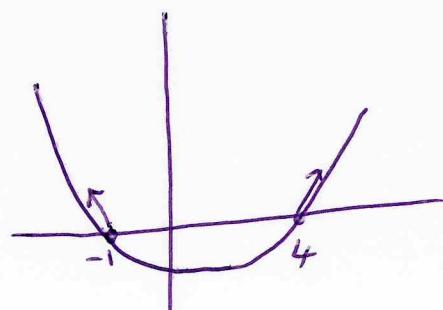
$$\boxed{1\frac{3}{5} < x}$$

$$\frac{2}{5} < x < 1\frac{3}{5}$$

(3)

June 2019 – Paper 3H

(Total for Question 18 is 3 marks)


19 Solve $x^2 > 3x + 4$

$$x^2 - 3x - 4 > 0$$

$$(x-4)(x+1) > 0$$

$$x > 4$$

$$x > -1$$

$$x < -1 \text{ or } x > 4$$

Sample 1 – Paper 1H

(Total for Question 19 is 3 marks)

19 Solve $22 < \frac{m^2 + 7}{4} < 32$

Show all your working.

$$\begin{array}{c|c|c} & 22 < \frac{m^2 + 7}{4} < 32 & \\ \times 4 & & \times 4 \\ 88 < m^2 + 7 < 128 & & \\ -7 & & -7 \\ 81 < m^2 < 121 & & \\ \sqrt{} & & \sqrt{} \\ \pm 9 < m < \pm 11 & & \end{array}$$

$$-11 < m < -9$$

and

$$9 < m < 11$$

20 n is an integer such that $3n + 2 \leq 14$ and $\frac{6n}{n^2 + 5} > 1$

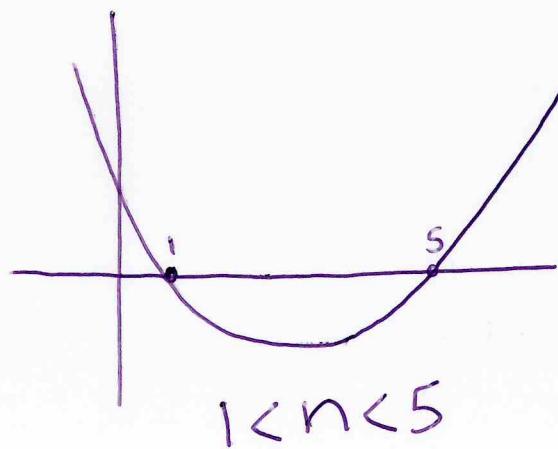
Find all the possible values of n .

$$3n + 2 \leq 14$$

$$3n \leq 12$$

$$n \leq 4$$

$$\frac{6n}{n^2 + 5} > 1$$


$$6n > n^2 + 5$$

$$0 > n^2 - 6n + 5$$

$$0 > (n-5)(n-1)$$

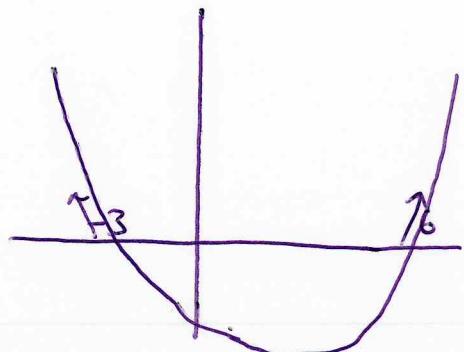
$$5 > n$$

$$1 > n$$

For both
inequalities

$$1 < n < 4$$

(Total for Question 20 is 5 marks)


21 Solve the inequality $x^2 > 3(x + 6)$

$$x^2 > 3x + 18$$

$$x^2 - 3x - 18 > 0$$

$$(x-6)(x+3) > 0$$

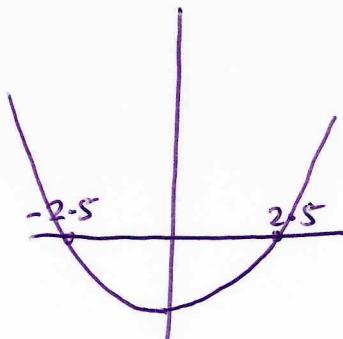
$$\underline{x > 6} \quad \underline{x > -3}$$

$$x < -3 \quad x > 6$$

24 Find the set of possible values of x for which

$$4x^2 - 25 < 0 \quad \text{and} \quad 12 - 5x - 3x^2 > 0$$

You must show all your working.

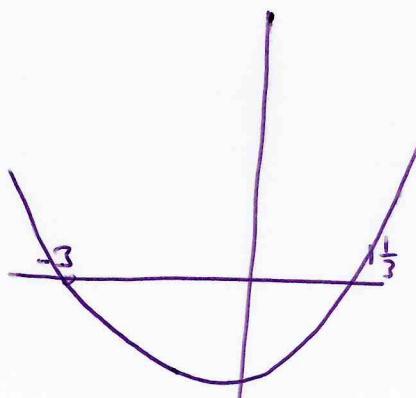

$$4x^2 - 25 < 0$$

$$4x^2 < 25$$

$$x^2 < \frac{25}{4}$$

$$x < \pm \sqrt{\frac{25}{4}}$$

$$x < \pm \frac{5}{2}$$


$$-2.5 < x < 2.5$$

$$12 - 5x - 3x^2 > 0$$

$$3x^2 + 5x - 12 < 0$$

$$(3x - 4)(x + 3) < 0$$

$$x < \frac{4}{3} \quad x < -3$$

$$-3 < x < \frac{4}{3}$$

$$-2.5 < x < \frac{4}{3}$$